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On the Solutions and the Steady States 
of a Master Equation 
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A complete characterization of the time behavior of the means and variance 
of a stochastic process which is generated by a finite number of independent 
systems is presented based on the master equation for the conditional 
probability. It is found that the means and variance relax to a steady state 
and that the steady state will be independent of the initial state if and only 
if a matrix related to the transition matrix is nonsingnlar. Finally, the result 
that the variance approaches its steady-state form at twice the rate of the 
means is shown to depend on the nonsingularity of the same matrix. 
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In a recent paper, ~1/the approach to steady state of a collection of indepen- 

dent  subsystems was discussed based on a master equat ion for the condi t ional  
probabili ty.  The transi t ion probabil i t ies in this equat ion were assumed l inear 

in the popula t ions  of  the subsystem states, a l though otherwise the form of 
the equat ion was quite general. It  was shown that the co lumn vector of means 

<N>(t) with components  (N~->(t) satisfies the equat ion 

d(N>/dt  = --A<N> (1) 

and that the modified variance matrix ~ij(t) = ~rij(t) --.f/j(t),  where <, is the 
usual variance matrix defined by 

a i i =  (N iNj>  - -  (Ni}<N~} 
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and 

satisfies the equation 

d,~ldt . . . . .  A ~  - ~ A ~  (2) 

In these equations, 32 r N~(t) = B (a fixed positive number), A is an j=0 
(r 4- 1) • (r + 1) matrix with --Au ~> 0, and Z~v=iAji . . . . .  A ~ ,  and the 
superscript T means the transpose. It is the purpose of  this note to clarify and 
extend remarks made in several papers n-41 concerning the nature of the 
solutions to Eqs. (1) and (2). 

To provide a basis for discussion, the following statements concerning 
the matrix A and the properties of the equations are proven: (a) there is at 
least one eigenvector of - A  with eigenvalue zero, and all of  the nonzero 
eigenvalues have negative real parts of magnitude less than 2 max,: {Ai~}. 
Furthermore, the zero eigenvector is unique if the graph of A is strongly 
connected, that is, if all the states are accessible. (b) The truncated means and 
variance, ( N i ) -  (N;).'.", i :/~ 0, and ~ ,  i , j  ~ 0, where ss denotes the 
steady state, satisfy linear equations similar to Eqs. (1) and (2) [see gqs. (3) 
and (4) below] with an r • r matrix A~ replacing A. With the exception of an 
extra zero eigenvalue for A, A and Ar have the same eigenvalues and there is 
asimple correspondence between the nonzero eigenvectors of the two matrices. 
The zero eigenvalue of A is unique if and only ifAr is nonsingular. (c) If  the 
means (N~) are initially nonnegative, then they remain nonnegative and 
bounded for all future times. 

Before proving statement (a), note that in case some of the components 
A~j are zero, the validity of the first part of the statement does not follow 
directly from the Routh-Hurwitz criterion3 41 The proof given here--which 
includes this case--uses the elegant theorem of Perron and Frobenius. I~, " 
Thus let --A be a matrix of the form given above and let q = max~ {A,} -- ~, 
where 3 > 0. Then, the matrix Q . . . . .  A _ qI, where I is the identity, is a 
nonnegative matrix and so by the Perron-Frobenius theorem, 3 Q has a 
positive eigenvalue r equal to the spectral radius of Q and there exists a 
nonnegative right eigenvector associated with r. But since - - A  = Q - ql ,  

this eigenvector is also an eigenvector of --A with eigenvalue r -- q. However 
notice that if .... A a  := /~a for k ~ 0, then the condition Y.~A u = 0 implies 
that ~ .~; = 0. Thus only the zero eigenvectors of --A can have nonnegative 
components and so r -- q = 0, and at least one zero eigenvector (with non- 
negative components) exists for --A. Since the eigenvalues of --A are trans- 

Although a proof of the first part of statement (a) is given in Rcf. 2, the accessibility 
criterion for unique steady states does not follow from that proof. 

3 See Ref. 5, Theorem 9.3.1. 
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lations by - -q  of  the eigenvalues of  Q and since the spectral radius of  Q was 
shown to equal q, it follows that all the eigenvalues of  - A  are in the closed 
disk of radius q centered at --q.  However, q := maxl {Ai,} ,'-- 8 for arbitrary 

> 0, so that the nonzero eigenvalues of  - -A must have negative real parts 
of  magnitude less than or equal to 2 maxi {A,}? It should be noted that if  

--A is irreducible or alternately if its graph is strongly connected, 5 then the 
same argument implies that the zero eigenvalue of  A is unique. Since strong 
connectivity implies that there are nonzero matrix elements connecting all 
states together either directly or by multiple transitions, this provides a 
generalization of the result proven by Siegert ~6' in case A satisfies detailed 
balance, namely, that if all states are accessible, the steady state is unique. In 
particular if the matrix elements of  - -A are all nonzero, then the graph of  - A  
will be strongly connected and so a matrix with positive transition rates has 
a unique zero eigenvalue. 

/ ' \  be the column vector with components To verify statement (b), let \N/,.  
(N~) - ( N ~ )  ~s, i v a  0, and let the matrix ~:r be defined by (~r)~ = ~ij, 
i, j :~a 0. Then, it follows by direct substitution of the conservation relation 
No = B --- Y'~=i N~ in Eqs. (1) and (2) that 

d ( N ) / d t  - - - A ~ ( N )  r (3) 

d ( / d t  = -A,.sc~ --  ~:,.A7 (4) 

where Ar is the r • r matrix whose components are (A~)~ i : :  A; i --  A, 0 for 
i, j ~ 0 and where (Ni') .~ solves d (N~)/dt  .= 0. To see the relationship 
between the nonzero eigenvectors of  A and A t ,  let ( 11) 

P = :  Ir 

an (r r- 1) • (r + 1) matrix where I,. is the r • r identity, so that 

�9 J It is no t  h a r d  to c o n s t r u c t  m a t r i c e s  w h o s e  e igenva lues  are  ac tua l ly  c o m p l e x .  For  e x a m p l e ,  

- A =  - 1 . 9  0.65X 
1 --12'35 

has  x -- O, - - 3  -i-/',.2 as  e igenva lues .  
~ See Ref. 5, p. 281. 
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Then, it is easily seen that o... o) 
A := PAP -x : :  ol 

\Ao~ Ar 

and that 

Since A and A are similar, it follows that A~ = ~ implies A& = )~a or 

Aol ~1 =_: ,~ ~1 . (5) 

But ifA -% 0, then ~2~ ~; must vanish and so Eq. (5) implies that A~ar = ' ~ r ,  
where ~ -= (oq ,..., ~r) r. Thus the components  ~1 ,..., o~r o f  the nonzero 
eigenvectors o f  A are identical to the corresponding components  o f  the non-  
zero eigenvectors o f  Am and ~0 is determined by Z~ ~i ~- 0. Moreover ,  since 
.,/I and A are similar, all o f  their eigenvalues are the same. But the eigenvalues 
o f  A are determined by det(A - M) -~ - ~  det(A~ - M r )  == 0 and so with 
the exception o f  an extra zero eigenvalue for A, A and A,. have identical 
eigenvalues. Thus A will have a unique zero eigenvalue if and only if Am is 
nonsingular." 

To prove statement (c), the invariance o f  the nonnegativity o f  the mcans, 
recall that  the solution to Eq. (1) is <N)(t) ---- exp(--At)<N)(0) .  Now,  it is 
known 7 that  - A i j  >~ 0 implies that  the matrix exp( - -At )  is nonnegative. 
Thus if <N)(0) is nonnegative, then so is <N)(t). Because of  the sum rule 
~j  <N~)(t) = B, the means will be bounded above by B if they are initially 
nonnegative. 

Using these results, it is possible to obtain a fairly complete picture o f  
the solutions to Eqs. (1) and (2). This can be done most  easily using Eqs. (1) 
and (4). In particular, these equations are solved by <N)(t) ---- exp(-At)<N)(0)  
and ~:r = e x p ( - - A d )  ~r(0) exp(-Arr t ) ,  as is verified by differentiation. More  
explicit expressions can be gotten f rom the spectral resolutions of  the exponen- 
tials, a result which known for arbitrary complex-valued matrices. 8 Indeed, 

~ An example of a matrix with two zero r is the 3 x 3 matrix with components 
A~. = A~ = --1, A22 ~ 2, and all other A~j --- 0. 

~ See Bellman. c7~ Notice that the result is somewhat stronger than quoted in Ref. 3. 
~ See Ref. 5, pp. 189-191. 
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(N~)(t) will be a sum of exponentials in the time whose time constants are 
the (possibly complex) eigenvalues of  A and whose coefficients are poly- 
nomials in t of  degree less than the index of  the eigenvalue. In particular, the 
polynomial coefficient of the zero eigenvalues must be of degree zero since 
by the result in (c), (Ni)(t) is bounded if all (N~)(0) ~> 0. Also, i fA is simple, 
that is, diagonalizable, then all the polynomial coefficients will be constants. 
Since the nonzero eigenvalues of A have negative real parts, the means will 
always relax to some steady-state values. The relaxation will involve, in the 
general case, polynomials as well as sines and cosines in the time with each 
term multiplied by a decaying exponential whose time constant is no greater 
than 2 max~ {A,;}. The steady state to which the means decay is not necessarily 
unique and is unique if and only if the matrix A~ is nonsingular. For example, 
the matrix given in footnote 6 is simple and has two linearly independent 
zero cigenvectors. Thus the asymptotic expression for 

(N)(t)  .... exp(--At)(N)(0) 

is just the projection of (N)(0) onto the space of zero eigenvalues. Since this 
space is two-dimensional, the steady state will not be unique. This occurs 
because the multiple zero eigenvalues of A have very different physical 
origins. The zero eigenvalue that results from the sum conditions ~ j  N~- : = B 
is actually a holonomic constraint on the variables ts~ and so is "removeable" 
as indicated by (b) above. The domain of  definition of the variables is not 
effected, however, by the "accidental" zero cigenvalues of A,. and so these 
zeros have the purely dynamical effect of  leading to multiple steady states. 

The form of the solution to the variance equation, Eq. (4), will be 
similar to that of the means except that the product of the spectral resolutions 
must be taken. This implies that the exponentials in the solution will be of the 
form exp[--(A~. + Aj) t], where Ak and Aj are the eigenvalues of A t ,  and that 
the polynomial coefficients will be of degree less than the product of  the 
indices of  the two eigenvalues, lfA~ can be diagonalized, then all the poly- 
nomial coefficients will be constants. While it is clear that the variance will 
relax to a steady state, it is again true that the steady state may or may not be 
unique. In fact, the steady state is determined by setting d~/dt = O, that is, 
by the solutions to the equation 

A,g,.  + ~ # / r  T = 0 

Now, it is known that this equation will have a unique solution if and only if 
A~ and - A ~  r have no eigenvalues in common. 9 Since the eigenvalues of  A, 
and A~ r are identical and their nonzero eigenvalues have negative real parts, 
the solution will be unique if and only ifA~ has no zero eigenvalues, that is, 

9 See Ref. 5, Theorem 8.5.1. 
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if At  is nonsingular.  In that case, the unique steady-state solution is scm - 0, 
which implies that  the steady-state form o f  the variance is 

a~. = ~ i j ( N i }  ss - -  { N , }  ss ~Nj}SS/B 

Also, if Am is nonsingular,  then all the exponentials occurring in ~(t) will 
contain sums of  nonzero eigenvalues, and so the approach  to the steady-state 
form of  the variance will occur  asymptotically at twice the rate o f  the 
approach  of  the mean. m 

On the other hand, if At  is not  invertible, then multiple solutions to the 
steady-state variance equation exist. In this case, the approach  to the steady 
state will not  be asymptotically twice as fast as that o f  the means. This occurs 
because when Am has a zero eigenvalue, exponentials o f  the form 
exp[-- (0  -!- A~) t] can appear  in ~(t) and these slowly varying components  
cannot  be removed by simply subtracting out  the asymptotic  steady state. 
Moreover ,  if multiple steady states are possible, the steady-state value o f  the 
variance will depend on the initial value o f  scm, which is arbitrary. Thus for 
singular Am, it is no longer be possible to define the " f o r m "  of  the variance at 
steady state, ~~ except to say that  cr~ = f~.  -q- ~:~(oo). It is worth repeating 
that  the existence o f  these pathological  solutions is a result o f  the different 
physical origins o f  multiple zero eigenvalues for the matrix A, and in case all 
states are accessible, such things will not  occur, n 
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